Exchangeable graphs,
conditional independence, and
computably-measurable samplers

DANIEL M. ROY

UNIVERSITY OF CAMBRIDGE

Joint work with

Nate Ackerman (Harvard)

Jeremy Avigad (CMU)

a Cameron Freer (MIT)

A

=
E) Jason Rute (U of Hawaii-Manoa)

COMPUTABILITY AND COMPLEXITY IN ANALYSIS
NAaNcy, FRANCE, JuLy 2013



THREE VIGNETTES

(1) Exchangeable sequences of random variables

(2) Exchangeable sequences of random sets with
exchangeable increments

(3) Exchangeable arrays of random variables

In each case, statisticians have come up against com-
putational difficulties and in each case computably
analysis sheds some light on what’s going on.

RECURRING THEMES

(a) How can we represent such processes?

Representation
Computability

(b) Implications for probabilistic programming
Computable a.e. versus computably measurable
Conditional independence

(¢) Inference in stochastic process models

“Fract approximate” inference



Exchangeable sequences of random variables

Let H be a probability measure on R and consider

the sequence Y1, Y2, ... of random variables such that
P(Y1€-)=H (1)
and for every n € N,
1 n -
P(Y, 1 Yi,.. ., Y, = H P,, (2
Ynp1 €1 )=t e D

where P, = 3.7, 8y, is the empirical distribution.

Y1,Y2,... is a (labeled) Chinese restaurant pro-
cess and this process has been hugely influential in
nonparametric Bayesian statistics in the last 15 years
in clustering.

Despite the dependence of Y,,+1 on earlier values
(Y1,Ya,...) £ (Y, Yoy, o) (3)

for every permutation 7 of N, i.e., the sequence is
exchangeable.

Thm (de Finetti). An infinite sequence of random
variables Y = (Y1,Ya,...) is exchangeable if and only
if it is conditionally i.i.d. (independent and identi-
cally distributed). In particular, there is a random
probability measure v s.t.

PY €-|v)=v" as. (4)

If you know v, you can sample Y;’s in parallel.
2



In the case of a Chinese restaurant process, we
can described v quite explicitly. In particular,

v= Z Vidg, a.s. (5)
i=1

Yi,Ya,... ~ H® (6)
Ui, Uz, ... ~ U(0,1)% (7)
Vi=U; [[a-U:), ieN (8)

i<J

v is a so-called Dirichlet process, an infinite dimen-
sional object. This was a major algorithmic road
block for statisticians until Papaspiliopoulos and
Roberts (2008) suggested to only generate random
variables as you need them. This is (naive) com-
putable analysis in practice!

Can we expose the conditional independence in gen-
eral?

Thm (Freer and R., 2012). The distribution of an
exchangeable sequence Y1,Ya, ... is computable if and
only if the distribution of its directing random mea-
sure v is computable.

In theory, you can always parallelize an algorithm
for generating an exchangeable sequence.

In practice, conditional independence (i.e., the op-
portunity to parallelize) is absolutely critical for ef-

ficient inference. .



Exchangeable sequences of random sets

In some cases, there is additional conditional inde-
pendence structure. Recall that a Poisson (point)
process with (finite) mean vH is a random set

{S1,...,5} (9)
81,82,... ~ H® (10)
k ~ Poisson(y) (11)

Consider the following exchangeable sequence of sets:
Y7 is a Poisson (point) process with mean H, and for
eachn € N,

Y1 \(YiU---UY,) (12)
is a Poisson (point) process with mean %_HH and

_#{isn:seY}
n+1 ’

]P(S S Yn+1 |Y1,...,Yn)

Y1,Ys,... is a (labeled) Indian buffet process and
it has also been hugely influential in nonparametric
Bayesian statistics in the past 6 years in clustering
with overlapping groups.

Now again, the sequence Y = (Y7,Y2,...) is ex-
changeable and so there is a random probability mea-
sure v (on the space of finite sets) such that

PY € |v)=v=.

But there’s a lot more structure!



In particular,
(1) If A4,..., Ay are disjoint sets, then the sets

YiNAi,...,Y1N A

are independent conditional on v, i.e., the Y}
have exchangeable increments; and

(2) if ¢ is a H-measure preserving transformation,
then the sequence Y,, = ¢(Y,), n € N, has the
same distribution as Y,, n € N.

This implies that there is a random countable se-

quence P in [0, 1] such that

P>P,>--->0 and ZPi<ooa.s.

7

and an i.i.d.-H collection S = {51, S’g, ...} such that
Y; C S as. (13)
P(S; € Y;|S,P) =P (14)

In particular, one can show that

P.=]]u; (15)

Jj<n

U, Us,... ~ U(0,1). (16)

Again, v (equivalently, P and S) are infinite dimen-
sional, but the same tricks for computation don’t
work. In practice, the sequence is truncated so that
Pp, = 0 for all sufficiently large m.
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Lem (R.). The probability P(Y1 =0 | P =) is a
discontinuous everywhere function on every measure
one set.

Statisticians were worried about truncation. So they
developed an auziliary variable method called slice
sampling to remove the approximation induced by
truncation, but maintain the conditional indepen-
dence.

Thm (slice sampling). Define
T=min{P; : S; €Y1U---UY,},

and let & be uniformly distributed on [0,T]. Then
P(Yy € -] S,P,¢&) and P(¢|YA, ..., Y, S, P) are com-
putable a.e.

What’s going on here?

Thm (R.). P(Yi € - | S, P) is computable on a set
of measure 1 — 27 uniformly in k.

Say such a function is computably measurable.
This representation dates back to Kriesel-Lacombe
(1957) and Sanin (1968), who proposed notions of
effectively measurable sets. Later, Ko (1986) built
on this work, studying computably measurable func-
tions.This is also related to layerwise-computable func-

tions and LP-computable functions. .



Exchangeable arrays of random variables

Let X = (X;,;)i,jen be an array of random variables
in some space S. (E.g., X;; € {0,1}, representing
the adjacency matrix of a graph.)

|

"u
"u

1l

Defn. Call X (jointly) exchangeable when

d
(Xi,5)ijen = (Xr(iy,x(j))irjen (7)
holds for every permutation 7 of N.

Most figures by James Lloyd (Cambridge) and Peter Orbanz (Columbia)
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Let A be Lebesgue measure on [0, 1].
Let N = {s C N : |s| < d}.

Let U, s € N?, be i.id.-A.

Write U; = U{i}.

Upg Ui Us Us U,
Uiy Upsy Upgy
Ugesy Upzay
Ugs,ay

Defn (standard exchangeable array). Let
f:[0,1]* — S be a measurable function, and put

X j :f(U@,Ui,Uj,U{Z',j}), i,7 € N. (18)

By a standard (exchangeable) array we mean an
array with the same distribution as X for some f.

Thm (Aldous, Hoover). An infinite array X is
exchangeable if and only it is standard, i.e.,

d
(Xij)ijen = (f(Ue, Ui, Uj, Ugi j3))ijen  (19)

or some measurable function f:]0,1]* = S.
[ ;



Example (exchangeable graph).
Assume X;; € {0,1} and X; ; = Xj; a.s.
X is the adjacency matrix of a random graph on N.

Let W be the space of symmetric measurable func-
tions from [0,1]? to [0, 1].
Such functions are called “graphons”.

If X is exchangeable, it’s standard w.r.t some f.
Let O(z,y) = Mu € [0,1] : f(Up,z,y,u) =1}
then © is a random element in W.

Uy U
| |
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COMPUTABILITY OF ALDOUS-HOOVER

Question: Let X be an exchangeable array, stan-
dard w.r.t. a function f. If X has a computable
distribution, is f computable?

Note that the element © is not uniquely determined
by the distribution of X. Let T : [0,1] — [0,1] be a
measure preserving transformation, and define

0" (z,y) = O(T(2), T(y))- (20)

N T

gy |iE

Then ©’ and © induce the same distribution on
graphs. Let ~ be equivalence up to a measure pre-
serving transformation.

Thm (Hoover). The measurable function f underly-
ing an exchangeable array is unique up to a measure
preserving transformation.
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de Finetti’s theorem is a special case of Aldous-Hoover.

Cor. An infinite sequence Y = (Y;)ien is exchange-
able if and only if

(V2)ien £ (9(Up, Us))ien (21)

for some measurable function g : [0,1]* = S.

The random measure
v=B(Yi €| Up) =P(g(Up,U1) € - | Up)  (22)
is the a.s. unique random measure satisfying
P(Y € |v)=v™ as. (23)

Thm (Freer and R., 2012). The distribution of the
sequence Y1,Ya, ... is computable if and only if the
distribution of v is computable.

Cor. LetY : [0,1] — S be a measurable function
such that Y (Up) is a exchangeable sequence. If Y is
A-a.e. computable then there exists a function

g: 10,12 = S that is N\*-a.c. computable that satis-

fies
Y (Up) £ (9(Up,U1), g(Up, U2),...).  (24)

12/18



Question: Is the analogous result for exchangeable
arrays true?

Thm (AFRR). No.

Proof sketch. Let pu be the distribution of an exchange-
able graph with a nonrandom graphon ©. Such an
exchangeable graph is ergodic. Then Lovasz and
Szegedy (2006) proved that the map

per [ [ e rasy (25)

is discontinuous w.r.t the weak topology. This al-
ready rules out computability. O

But note that if f only takes values in [0, 1], then
this function is continuous.

Question: If we restrict attention to graphons tak-
ing values in {0, 1}, can we compute a graphon from
the distribution of a graph it induces?

Thm (AFRR). No.

AFRR = Avigad,Freer,R.,Rute

13



CONSTRUCTION

Write z1x2 ... for the a.s. unique binary expansion
of a uniform random variable z in [0, 1].

Consider the symmetric function ¥ : [0,1]> — {0, 1}
given by
\11(3,’1.1’2..., ylyz...)

1 @nezy)(vie{2m 2" — 1)) (x5 = y)),
" 10 otherwise.

Here is a picture of this function (1=black, O0=white):

14



CONSTRUCTION (CONTINUED...)

Thm (AFRR). Let Uy, Us,... be i.i.d. uniform, and
consider the exchangeable graph with edges

Xi; = U(U;, Uy). (26)

Then the distribution of X is computable, but there
is no a.e. computable version of W.

Proof sketch. For U to be a.e. computable it must be
continuous on a measure one set. However, \1171{0}
is a nowhere dense set of positive measure

1 3 7

E-Z-g---~0.289, (27)
and so ¥ is not continuous on a measure one set. The
(slightly harder) part is showing that this property is
true also for every weakly isomorphic function g, i.e.,
functions g that generate graphs X’ with the same
distribution as X. O

Now what?

15



Silver lining?

Let u be a computable distribution on a computable
metric space T, let S be a computable metric space,
and let f: T — S be a measurable function.

Defn. Recall f is computably-measurable when
it is computable on a set of y-measure 1 — 27 uni-
formly in k.

Thm (AFRR). Let X be an ergodic exchangeable ar-
ray that is computable and such that there is an un-
derlying nonrandom graphon © that takes values in
{0,1}. Then there is a computably-measurable ver-
sion of ©, uniformly in the distribution of X.

Let f: [0,1]* — [0, 1] and define the exchangeable
multigraph

Xiy = f(Us, Ui, U, Ui ) (28)
Each X" is an ergodic exchangeable array with graphon
O(z,y) = Mu: f(z,y,u) = 1}.

Thm (AFRR). Let X be an exchangeable multigraph
that is computable and such that there is an underly-
ing nonrandom graphon ©. Then there is a computably-
measurable version of ©, uniformly in the distribu-
tion of X.

16



PROBABILISTIC PROGRAMMING

Probabilistic programming is an approach to sta-
tistical modeling where the statistician

(1) uses a program to define a probabilistic model
(X,Y, ©) of some quantities (z,y,0), and

(2) performs statistical analysis using generic algo-
rithms that take these programs as input and
compute various conditional distributions, e.g.,
PO=0|X=zY =y).

Probabilistic programs have been identified with a.e.
computable functions from {0,1}" — S for some
computable metric space S.

This work suggests that we should possibly consider
re-founding probabilistic programming on computably-
measurable representations of distributions as a.e.
computable representations rule out exposing impor-
tant conditional independencies in some cases.

17/18



CONCLUSIONS

(1)

All computable exchangeable sequences can be
sampled in a parallel way.

This is no longer true for exchangeable arrays.

If we are happy with the sampler failing with
some probability that we control, we can pro-
duce parallel samplers again.

Given how important conditional independence
is to efficient inference, the main representa-
tional result suggests that we might rethink the
current foundation of probabilistic programming
on a.e. computability.

We can potentially eliminate the error intro-
duced through “truncation” by using more gen-
eral versions of slice sampling.
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