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EXCHANGEABLE GRAPHS,CONDITIONAL INDEPENDENCE, ANDCOMPUTABLY-MEASURABLE SAMPLERS1

Three vignettes

(1) Exchangeable sequences of random variables

(2) Exchangeable sequences of random sets with
exchangeable increments

(3) Exchangeable arrays of random variables

In each case, statisticians have come up against com-
putational difficulties and in each case computably
analysis sheds some light on what’s going on.

Recurring themes

(a) How can we represent such processes?

Representation

Computability

(b) Implications for probabilistic programming

Computable a.e. versus computably measurable

Conditional independence

(c) Inference in stochastic process models

“Exact approximate” inference
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Exchangeable sequences of random variables

Let H be a probability measure on R and consider
the sequence Y1, Y2, . . . of random variables such that

P(Y1 ∈ · ) = H (1)

and for every n ∈ N,

P(Yn+1 ∈ · | Y1, . . . , Yn) =
1

n+ 1
H +

n

n+ 1
P̂n, (2)

where P̂n ≡
∑n
i=1 δYi is the empirical distribution.

Y1, Y2, . . . is a (labeled) Chinese restaurant pro-
cess and this process has been hugely influential in
nonparametric Bayesian statistics in the last 15 years
in clustering.

Despite the dependence of Yn+1 on earlier values

(Y1, Y2, . . . )
d
= (Yπ1 , Yπ2 , . . . ) (3)

for every permutation π of N, i.e., the sequence is
exchangeable.

Thm (de Finetti). An infinite sequence of random
variables Y = (Y1, Y2, . . . ) is exchangeable if and only
if it is conditionally i.i.d. (independent and identi-
cally distributed). In particular, there is a random
probability measure ν s.t.

P(Y ∈ · | ν) = ν∞ a.s. (4)

If you know ν, you can sample Yi’s in parallel.
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In the case of a Chinese restaurant process, we
can described ν quite explicitly. In particular,

ν =

∞∑
i=1

ViδỸi
a.s. (5)

Ỹ1, Ỹ2, . . . ∼ H∞ (6)

U1, U2, . . . ∼ U(0, 1)∞ (7)

Vj ≡ Uj
∏
i<j

(1− Ui), i ∈ N. (8)

ν is a so-called Dirichlet process, an infinite dimen-
sional object. This was a major algorithmic road
block for statisticians until Papaspiliopoulos and
Roberts (2008) suggested to only generate random
variables as you need them. This is (näıve) com-
putable analysis in practice!

Can we expose the conditional independence in gen-
eral?

Thm (Freer and R., 2012). The distribution of an
exchangeable sequence Y1, Y2, . . . is computable if and
only if the distribution of its directing random mea-
sure ν is computable.

In theory, you can always parallelize an algorithm
for generating an exchangeable sequence.
In practice, conditional independence (i.e., the op-
portunity to parallelize) is absolutely critical for ef-
ficient inference.
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Exchangeable sequences of random sets

In some cases, there is additional conditional inde-
pendence structure. Recall that a Poisson (point)
process with (finite) mean γH is a random set

{S1, . . . , Sκ} (9)

S1, S2, . . . ∼ H∞ (10)

κ ∼ Poisson(γ) (11)

Consider the following exchangeable sequence of sets:
Y1 is a Poisson (point) process with mean H, and for
each n ∈ N,

Yn+1 \ (Y1 ∪ · · · ∪ Yn) (12)

is a Poisson (point) process with mean 1
n+1

H and

P(s ∈ Yn+1 | Y1, . . . , Yn) =
#{j ≤ n : s ∈ Yj}

n+ 1
.

Y1, Y2, . . . is a (labeled) Indian buffet process and
it has also been hugely influential in nonparametric
Bayesian statistics in the past 6 years in clustering
with overlapping groups.

Now again, the sequence Y = (Y1, Y2, . . . ) is ex-
changeable and so there is a random probability mea-
sure ν (on the space of finite sets) such that

P(Y ∈ · | ν) = ν∞.

But there’s a lot more structure!
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In particular,

(1) If A1, . . . , Ak are disjoint sets, then the sets

Y1 ∩A1, . . . , Y1 ∩Ak
are independent conditional on ν, i.e., the Yj
have exchangeable increments; and

(2) if φ is a H-measure preserving transformation,
then the sequence Y ′n = φ(Yn), n ∈ N, has the
same distribution as Yn, n ∈ N.

This implies that there is a random countable se-
quence P in [0, 1] such that

P1 ≥ P2 ≥ · · · > 0 and
∑
i

Pi <∞ a.s.

and an i.i.d.-H collection S̃ = {S̃1, S̃2, . . .} such that

Yj ⊂ S̃ a.s. (13)

P(S̃j ∈ Yj |S̃, P ) = Pi. (14)

In particular, one can show that

Pn =
∏
j≤n

Uj (15)

U1, U2, . . . ∼ U(0, 1)∞. (16)

Again, ν (equivalently, P and S̃) are infinite dimen-
sional, but the same tricks for computation don’t
work. In practice, the sequence is truncated so that
Pm = 0 for all sufficiently large m.
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Lem (R.). The probability P(Y1 = ∅ | P = ·) is a
discontinuous everywhere function on every measure
one set.

Statisticians were worried about truncation. So they
developed an auxiliary variable method called slice
sampling to remove the approximation induced by
truncation, but maintain the conditional indepen-
dence.

Thm (slice sampling). Define

T = min{Pj : S̃j ∈ Y1 ∪ · · · ∪ Yn},
and let ξ be uniformly distributed on [0, T ]. Then

P(Y1 ∈ · | S̃, P, ξ) and P(ξ|Y1, . . . , Yn, S̃, P ) are com-
putable a.e.

What’s going on here?

Thm (R.). P(Y1 ∈ · | S̃, P ) is computable on a set
of measure 1− 2−k, uniformly in k.

Say such a function is computably measurable.
This representation dates back to Kriesel-Lacombe
(1957) and Šanin (1968), who proposed notions of
effectively measurable sets. Later, Ko (1986) built
on this work, studying computably measurable func-
tions.This is also related to layerwise-computable func-
tions and Lp-computable functions.
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Exchangeable arrays of random variables

Let X = (Xi,j)i,j∈N be an array of random variables
in some space S. (E.g., Xi,j ∈ {0, 1}, representing
the adjacency matrix of a graph.)

EXCHANGEABILITY FOR CORRESPONDING ARRAYS
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James Lloyd 9 / 45

Defn. Call X (jointly) exchangeable when

(Xi,j)i,j∈N
d
= (Xπ(i),π(j))i,j∈N (17)

holds for every permutation π of N.

Most figures by James Lloyd (Cambridge) and Peter Orbanz (Columbia)
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• Links between websites
• Products that customers have purchased
• Proteins that interact
• Relational databases

MULTIPLE RELATIONS AND COVARIATES / SEQUENCES

Student Course

Observed Takes

Friends GradeAge

X X X X X
X
X
X
X
X

⇥
⇥

X

X

A

A

B

B
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D

D
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F

15

15

15

14

14

16
James Lloyd 4 / 45
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Let λ be Lebesgue measure on [0, 1].

Let Ñd ≡ {s ⊂ N : |s| ≤ d}.
Let Us, s ∈ Ñ2, be i.i.d.-λ.
Write Ui ≡ U{i}.

U∅ U1 U2 U3 U4 · · ·
U{1,2} U{1,3} U{1,4} · · ·

U{2,3} U{2,4} · · ·
U{3,4} · · ·

. . .

Defn (standard exchangeable array). Let
f : [0, 1]4 → S be a measurable function, and put

Xi,j = f(U∅, Ui, Uj , U{i,j}), i, j ∈ N. (18)

By a standard (exchangeable) array we mean an
array with the same distribution as X for some f .

Thm (Aldous, Hoover). An infinite array X is
exchangeable if and only it is standard, i.e.,

(Xi,j)i,j∈N
d
= (f(U∅, Ui, Uj , U{i,j}))i,j∈N (19)

for some measurable function f : [0, 1]4 → S.

9/18
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Example (exchangeable graph).
Assume Xi,j ∈ {0, 1} and Xi,j = Xj,i a.s.
X is the adjacency matrix of a random graph on N.

Let W be the space of symmetric measurable func-
tions from [0, 1]2 to [0, 1].
Such functions are called “graphons”.

If X is exchangeable, it’s standard w.r.t some f .
Let Θ(x, y) ≡ λ{u ∈ [0, 1] : f(U∅, x, y, u) = 1}
then Θ is a random element in W.

RECAP: EXCHANGEABLE ARRAY REPRESENTATION

Representation results inspire a generic modelling recipe

e.g., Binary networks
⇥ - Adjacency matrix approximated by function on unit square
Ui - Each node associated with a latent variable in [0, 1]

Wij := ⇥(Ui, Uj) - Evaluation of approximate adjacency matrix
Xij ⇠ Bernoulli(Wij) - Bernoulli likelihood (can be shown to be general)

⇥ can be pictured as a blurred adjacency matrix

0
0

1
1

U1

U1

U2

U2

0

1

Pr{X12 = 1}
⇥

James Lloyd 14 / 45

.
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Fig. 7: Typical directing random functions underlying, from left to right, 1) an IRM (where partitions correspond with a Chinese restaurant process) with
conditionally i.i.d. link probabilities; 2) a more flexible variant of the IRM with merely exchangeable link probabilities as in Example IV.3; 3) a LFRM (where
partitions correspond with an Indian buffet process) with feature-exchangeable link probabilities as in Example IV.10; 4) a Mondrian-process-based model
with a single latent dimension; 5) a Gaussian-processed-based model with a single latent dimension. (Note that, in practice, one would use more than one
latent dimension in the last two examples, although this complicates visualization. In the first four figures, we have truncated each of the “stick-breaking”
constructions at a finite depth, although, at the resolution of the figures, it is very difficult to notice the effect.)

Then, two objects represented by random variables U and U 0

are equivalent iff U, U 0 2 E(N) for some finite set N ⇢ N. As
before, we could consider a simple, cluster-based representing
function where the block values are given by an (fN,M ),
indexed now by finite subsets N, M ✓ N. Then fN,M would
determine how two objects relate when they possess features
N and M , respectively.

However, if we want to capture the idea that the rela-
tionships between objects depend on the individual features
the objects possess, we would not want to assume that the
entries of fN,M formed an exchangeable array, as in the case
of a simple, cluster-based model. E.g., we might choose
to induce more dependence between fN,M and fN 0,M when
N \N 0 6= ; than otherwise. The following definition captures
the appropriate relaxation of exchangeability:

Definition IV.9 (feature-exchangeable array). Let Y :=
(YN,M ) be an array of random variables indexed by pairs
N, M ✓ N of finite subsets. For a permutation ⇡ of N and
N ✓ N, write ⇡(N) := {⇡(n) : n 2 N} for the image. Then,
we say that Y is feature-exchangeable when

(YN,M )
d
= (Y⇡(N),⇡(M)), (IV.7)

for all permutations ⇡ of N. /

Informally, an array Y indexed by sets of features is feature-
exchangeable if its distribution is invariant to permutations of
the underlying feature labels (i.e., of N). The following is an
example of a feature-exchangeable array, which we will use
when we re-describe the Latent Feature Relational Model in
the language of feature-based models:

Example IV.10 (feature-exchangeable link probabilities). Let
w := (wij) be a conditionally i.i.d. array of random variables
in R, and define ✓ := (✓N,M ) by

✓N,M = sig(
P

i2N

P
j2M wij), (IV.8)

where sig : R ! [0, 1] maps real values to probabilities via,
e.g., the sigmoid or probit functions. It is straightforward to
verify that ✓ is feature-exchangeable. /

We can now define simple feature-based models:

Definition IV.11. We say that a Bayesian model of an ex-
changeable array X is simple feature-based when, for some

random function F representing X , there are random feature
allocations B and C of the unit interval [0, 1] such that, for
every pair N, M ✓ N of finite subsets, F takes the constant
value fN,M on the block

AN,M := B(N) ⇥ C(M) ⇥ [0, 1], (IV.9)

and the values f := (fN,M ) themselves form a feature-
exchangeable array, independent of B and C. We say an array
is simple feature-based if its distribution is. /

We can relate this definition back to cluster-based models
by pointing out that simple feature-based arrays are simple
cluster-based arrays when either i) the feature allocations
are partitions or ii) the array f is exchangeable. The latter
case highlights the fact that feature-based arrays relax the
exchangeability assumption of the underlying block values.

As in the case of simple cluster-based models, nonparamet-
ric simple feature-based models will place positive mass on
feature allocations with an arbitrary number of distinct sets.
As we did with general cluster-based models, we will define
general feature-based models as randomizations of simple
models:

Definition IV.12 (feature-based models). We say that a
Bayesian model for an exchangeable array X := (Xij) in X
is feature-based when X is a P -randomization of a simple,
feature-based, exchangeable array ✓ := (✓ij) taking values in
a space T , for some probability kernel P from T to X. We
say an array is feature-based when its distribution is. /

Comparing Definitions IV.5 and IV.12, we see that the
relationship between random functions representing ✓ and X
are the same as with cluster-based models. We now return to
the LFRM model, and describe it in the language of feature-
based models:

Example IV.13 (Latent Feature Relational Model continued).
The random feature allocations underlying the LFRM can be
described in terms of so-called “stick-breaking” constructions
of the Indian buffet process. One of the simplest stick-breaking
constructions, and the one we will use here, is due to Teh,
Görür, and Ghahramani [61]. (See also [63], [52] and [53].)

Let W1, W2, . . . be an i.i.d. sequence of Beta(↵, 1) random
variables for some concentration parameter ↵ > 0. For every
n, we define Pn :=

Qn
j=1 Wj . (The relationship between

10/18
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Computability of Aldous-Hoover

Question: Let X be an exchangeable array, stan-
dard w.r.t. a function f . If X has a computable
distribution, is f computable?

Note that the element Θ is not uniquely determined
by the distribution of X. Let T : [0, 1] → [0, 1] be a
measure preserving transformation, and define

ΘT (x, y) ≡ Θ(T (x), T (y)). (20)

“OR-nonexch” — 2013/6/12 — 14:07 — page 9 — #9

9

Bayesian models are usually defined by defining a prior and
a sampling distribution (i.e., likelihood). We hence have to
stress here that, in the representation above, the sampling
distributions p and q are generic—any jointly or separately
exchangeable matrix can be represented with these sampling
distributions, and specifying the model is equivalent to speci-
fying the prior, i.e., the distribution of F .

Remark III.10 (Non-exchangeable arrays). Various types of
array-valued data depend on time or some other covariate. In
this case, joint or separate exchangeability can be assumed
to hold marginally, as described in Section II-C. For time-
dependent graph data, for example, one would assume that
joint exchangeability holds marginally at each point in time.
In this case, the random mapping ⇠ in (II.19) becomes a time-
indexed array. The random function W ( . , . ) in Eq. (III.4)
then turns into a function W ( . , . , t) additionally dependent
on time—which raises new modeling questions, e.g., whether
the stochastic process (W ( . , . , t))t should be smooth. More
generally, the discussion in II-C applies to joint and separate
exchangeability just as it does to exchangeable sequences.

There is a much deeper reason why exchangeability may not
be an appropriate assumption—too oversimplify, because ex-
changaeble models of graphs may generate too many edges—
which is discussed in depth in Section VII. /

D. Uniqueness of representations

In the representation Eq. (III.4), random graph distributions
are parametrized by measurable functions w : [0, 1]2 ! [0, 1].
This representation is not unique, as illustrated in Fig. 5. In
mathematics, the lack of uniqueness causes a range of techni-
cal difficulties. In statistics, it means that w, when regarded
as a model parameter, is not identifiable. It is possible, though
mathematically challenging, to treat the estimation problem up
to equivalence of functions; Kallenberg [35, Theorem 4] has
solved this problem for a large class of exchangeable arrays
(see also [18, §4.4] for recent related work). For now, we will
only explain the problem; a unique parametrizations exists,
but it is based on the notion of a graph limit, and has to be
postponed until Section V.

To see that the representation by w is not unique, note that
the only requirement on the random variables Ui in Theo-
rem III.4 is that they are uniformly distributed. Suppose we

Fig. 5: Non-uniqueness of representations: The function on the left
parametrizes a random graph as in Fig. 4. On the right, this function has been
modified by dividing the unit square into 10 ⇥ 10 blocks and applying the
same permutation of the set {1, . . . , 10} simultaneously to rows and columns.
Since the random variables Ui in Eq. (III.4) are i.i.d., sampling from either
function defines one and the same distribution on random graphs.

1

10

0

w

0

01

1

w0

1
2

w00

Fig. 6: The functions w and w0 are distinct but parametrize the same
random graph (an almost surely bipartite graph). Both remain invariant and
hence distinct under monotonization, which illustrates that monotonization
does not yield a canonical representation (see Remark III.11 for details).
Additionally, function w00 shows that the projections do not distinguish
different random graphs: w00 projects to the same constant functions as w
and w0, but parametrizes a different distribution (an Erdös-Renyi graph with
edge probability 1/2).

define a bijective function � : [0, 1]! [0, 1] with the property
that, if U is a uniform random variable, �(U) is still uniformly
distributed. Such a mapping is called a measure-preseving
transformation (MPT), because it preserves the uniform prob-
ability measure. Intuitively, an MPT generalizes the concept
of permuting the nodes of a graph to the representation of
graphs by functions on a continous set. There is an infinite
number of such mappings. For example, we could define � by
partitioning [0, 1] into any number of blocks, and then permute
these blocks, as illustrated in Fig. 5

In the sampling procedure Eq. (III.4), we can apply �
simultaneously to both axes of [0, 1]2—formally, we apply
the mapping �⌦ �—without changing the distribution of the
resulting random graph, since the �(Ui) are still uniform.
Equivalently, we can leave the Ui untouched, and instead apply
�⌦ � to the function w. The resulting function (�⌦ �) � w
parametrizes the same random graph as w.

Remark III.11 (Monotonization is not applicable). A ques-
tion which often arises in this context is whether a unique
representation can be defined through “monotonization”: On
the interval, every bounded real-valued function can be
transformed into a monotone left-continuous functions by a
measure-preserving transformation, and this left-continuous
representation is unique [e.g. 45, Proposition A.19]. It is
well known in combinatorics that the same does not hold
on [0, 1]2 [15, 45]. More precisely, one might attempt to
monotonize w on [0, 1]2 by first projecting onto the axes, i.e.,
by defining w1(x) :=

R
w(x, y)dy and w2(y) :=

R
w(x, y)dx.

The function w1 can be transformed into a monotone repre-
sentation by a unique MPT �1, and so can w2 by �2. We
could then use (�1 ⌦ �2) � w as a representative of w, but
this approach does not yield a canonical representation: Fig. 6
shows two distinct functions w and w0, which have indentical
projections w1 = w2 = w0

1 = w0
2 (the constant function 1/2)

and determine identical MPTs �1 and �2 (the identity map).
The monotonizations of w and w0 are hence again w and w0,
which are still distinct, even though w and w0 parametrize the
same graph. /

IV. LITERATURE SURVEY

The representation theorems show that any Bayesian model
of an exchangeable array can be specified by a prior on

Then Θ′ and Θ induce the same distribution on
graphs. Let ∼ be equivalence up to a measure pre-
serving transformation.

Thm (Hoover). The measurable function f underly-
ing an exchangeable array is unique up to a measure
preserving transformation.

11/18
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de Finetti’s theorem is a special case of Aldous-Hoover.

Cor. An infinite sequence Y = (Yi)i∈N is exchange-
able if and only if

(Yi)i∈N
d
= (g(U∅, Ui))i∈N (21)

for some measurable function g : [0, 1]2 → S.

The random measure

ν = P(Y1 ∈ · | U∅) = P(g(U∅, U1) ∈ · | U∅) (22)

is the a.s. unique random measure satisfying

P(Y ∈ · | ν) = ν∞ a.s. (23)

Thm (Freer and R., 2012). The distribution of the
sequence Y1, Y2, . . . is computable if and only if the
distribution of ν is computable.

Cor. Let Y : [0, 1]→ S∞ be a measurable function
such that Y (U∅) is a exchangeable sequence. If Y is
λ-a.e. computable then there exists a function
g : [0, 1]2 → S that is λ2-a.e. computable that satis-
fies

Y (U∅)
d
= (g(U∅, U1), g(U∅, U2), . . . ). (24)

12/18
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Question: Is the analogous result for exchangeable
arrays true?

Thm (AFRR). No.

Proof sketch. Let µ be the distribution of an exchange-
able graph with a nonrandom graphon Θ. Such an
exchangeable graph is ergodic. Then Lovász and
Szegedy (2006) proved that the map

µ 7→
∫ 1

0

∫ 1

0

[Θ(x, y)]2dxdy (25)

is discontinuous w.r.t the weak topology. This al-
ready rules out computability. �

But note that if f only takes values in [0, 1], then
this function is continuous.

Question: If we restrict attention to graphons tak-
ing values in {0, 1}, can we compute a graphon from
the distribution of a graph it induces?

Thm (AFRR). No.

AFRR = Avigad,Freer,R.,Rute
13/18
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Construction

Write x1x2 . . . for the a.s. unique binary expansion
of a uniform random variable x in [0, 1].

Consider the symmetric function Ψ : [0, 1]2 → {0, 1}
given by

Ψ(x1x2 . . . , y1y2 . . . )

=

{
1 (∃n ∈ Z+) (∀j ∈ {2n, 2n+1 − 1}) (xj = yj),

0 otherwise.

Here is a picture of this function (1=black, 0=white):

14/18



EXCHANGEABLE GRAPHS,CONDITIONAL INDEPENDENCE, ANDCOMPUTABLY-MEASURABLE SAMPLERS15

Construction (continued...)

Thm (AFRR). Let U1, U2, . . . be i.i.d. uniform, and
consider the exchangeable graph with edges

Xi,j = Ψ(Ui, Uj). (26)

Then the distribution of X is computable, but there
is no a.e. computable version of Ψ.

Proof sketch. For Ψ to be a.e. computable it must be
continuous on a measure one set. However, Ψ−1{0}
is a nowhere dense set of positive measure

1

2
· 3

4
· 7

8
· · · h 0.289, (27)

and so Ψ is not continuous on a measure one set. The
(slightly harder) part is showing that this property is
true also for every weakly isomorphic function g, i.e.,
functions g that generate graphs X ′ with the same
distribution as X. �

Now what?

15/18
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Silver lining?

Let µ be a computable distribution on a computable
metric space T , let S be a computable metric space,
and let f : T → S be a measurable function.

Defn. Recall f is computably-measurable when
it is computable on a set of µ-measure 1− 2−k, uni-
formly in k.

Thm (AFRR). Let X be an ergodic exchangeable ar-
ray that is computable and such that there is an un-
derlying nonrandom graphon Θ that takes values in
{0, 1}. Then there is a computably-measurable ver-
sion of Θ, uniformly in the distribution of X.

Let f : [0, 1]3 → [0, 1] and define the exchangeable
multigraph

Xk
i,j = f(U∅, Ui, Uj , U

k
{i,j}). (28)

EachXk is an ergodic exchangeable array with graphon
Θ(x, y) = λ{u : f(x, y, u) = 1}.
Thm (AFRR). Let X be an exchangeable multigraph
that is computable and such that there is an underly-
ing nonrandom graphon Θ. Then there is a computably-
measurable version of Θ, uniformly in the distribu-
tion of X.

16/18
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Probabilistic programming

Probabilistic programming is an approach to sta-
tistical modeling where the statistician

(1) uses a program to define a probabilistic model
(X,Y,Θ) of some quantities (x, y, θ), and

(2) performs statistical analysis using generic algo-
rithms that take these programs as input and
compute various conditional distributions, e.g.,
P(Θ = θ | X = x, Y = y).

Probabilistic programs have been identified with a.e.
computable functions from {0, 1}N → S for some
computable metric space S.

This work suggests that we should possibly consider
re-founding probabilistic programming on computably-
measurable representations of distributions as a.e.
computable representations rule out exposing impor-
tant conditional independencies in some cases.
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Conclusions

(1) All computable exchangeable sequences can be
sampled in a parallel way.

(2) This is no longer true for exchangeable arrays.

(3) If we are happy with the sampler failing with
some probability that we control, we can pro-
duce parallel samplers again.

(4) Given how important conditional independence
is to efficient inference, the main representa-
tional result suggests that we might rethink the
current foundation of probabilistic programming
on a.e. computability.

(5) We can potentially eliminate the error intro-
duced through “truncation” by using more gen-
eral versions of slice sampling.
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